Multiple Start Branch and Prune Filtering Algorithm for Nonconvex Optimization

نویسندگان

  • Rangaprasad Arun Srivatsan
  • Howie Choset
چکیده

Automatic control systems, electronic circuit design, image registration, SLAM and several other engineering problems all require nonconvex optimization. Many approaches have been developed to carry out such nonconvex optimization, but they suffer drawbacks including large computation time, require tuning of multiple unintuitive parameters and are unable to find multiple local/global minima. In this work we introduce multiple start branch and prune filtering algorithm (MSBP), a Kalman filtering-based method for solving nonconvex optimization problems. MSBP starts off with a number of initial state estimates, which are branched and pruned based on the state uncertainty and innovation respectively. We show that compared to popular methods used for solving nonconvex optimization problems, MSBP has fewer parameters to tune, making it easier to use. Through a case study of point set registration, we demonstrate the efficiency of MSBP in estimating multiple global minima, and show that MSBP is robust to initial estimation error in the presence of noise and incomplete data. The results are compared to other popular methods for nonconvex optimization using standard datasets. Overall MSBP offers a better success rate at finding the optimal solution with less computation time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Global Optimization Algorithm for Nonconvex Generalized Disjunctive Programming and Applications to Process Systems

Abstract A global optimization algorithm for nonconvex Generalized Disjunctive Programming (GDP) problems is proposed in this paper. By making use of convex underestimating functions for bilinear, linear fractional and concave separable functions in the continuous variables, the convex hull of each nonlinear disjunction is constructed. The relaxed convex GDP problem is then solved in the first ...

متن کامل

αBB: A global optimization method for general constrained nonconvex problems

A branch and bound global optimization method, BB, for general continuous optimization problems involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem is obtained by (i) replacing all nonconvex terms of special structure (i.e. bil...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

New Formulations and Branching Strategies for the Gop Algorithm

In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. A global optimization algorithm, GOP, was presented for the solution of the problem through a series of primal and relaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016